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Electron cooling at high energys with an electron beam 

circulating in a storage ring was proposed a long time ago,1 

but the idea was dismissed with a premature judgement of the 

impossibility of achieving a reasonably fast cooling rate with 

the beam density available. For instance, the present Fermilab 

scheme has a projected cooling time of 50 msec with an electron 

current density of 1 A/cm2 at B = 0.566. At larger energies, 

because of the strong dependence of the cooling rate on the 

beam momentum, a reasonable cooling rate can be obtained only 

with very high electron densities. Recently C. Rubbia3 

pointed out that indeed such large densities are available in 

stored electron bunches. An average beam current of 100 mA 

already would correspond to a peak current of tens of amperes. 

The beam transverse size can be made quite small, down to a 

millimeter or even less, giving a local density of thousands 

of A/cm* or more. 

Rubbia's second point was that at high energies, electrons 

radiate, so whatever momentum is transferred to them by cooling 

a proton or antiproton beam will be carried away as radiation, 

allowing the electron beam to preserve its size, though at the 

cost of some enlargement. 

Finally, the third thing pointed out by Rubbia is that at 

high energies fast cooling rates are not necessarily required. 

There are too possible applications of the high-energy 

electron cooling: 

1. It could be possible to raise the beam-beam limit from 

the canonical number of Av = 0.005 to, say, Av = 0.02. This 

would increase the luminosity by an order of magnitude. Indeed 
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larger Av values cause shortening of the beam lifetime because 

of a hypothetical Arnol'd diffusion process. The effects of 

this process can eventually be balanced with electron cooling. 

2. The one-beam lifetime itself,even in the absence of the 

second one, could be too small due to processes like gas 

scattering. The "heating" of the proton beam caused by such 

process could then be balanced off by taking the "heat" away 

from the beam by means of "electron cooling". 

In the following we shall look in more detail at the 

feasibility of high-energy electron cooling, especially in the 

context of an experiment for the Main Ring with the aim of lengthen- 

ing the beam lifetime. Although some approximation in our 

approach cannot be avoided, we are nevertheless mostly interested 

in a self-consistent solution which takes into account the 

behavior of the equilibrium of the proton (antiproton) beam as 

well as the electron beam, which we assume is circulating in a 

storage ring. 

At the end, we also look at the features of the electron 

storage ring which, as one would expect, is mostly made of 

wiggler magnets. 

The Electron and Proton Beams in Absence of Cooling 

The high-energy electron cooling scheme is the one outlined 

in Figure 1. There are two rings: one could be identified with 

the Main Ring where protons are circulating at a constant energy 

Ep and the other with an electron storage ring at energy Ee. 

The two energies are adjusted so that the two beams have the 

same velocity. The two rings also share a long straight section 

of length k where proton bunches and electron bunches travel 

together in the same direction. We make the obvious assumption 
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Main Ring 

b P(P) 
// 

wigglers 
Electron Storage Ring 

Figure 1. High Energy Electron Cooling Plan 
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that the two kinds of bunches are roughly matched in size and 

length. 

In the following we shall denote by subscripts Ire" and "p" 

the quantities which refer respectively to the electrons 

and to the protons. 

In the absence of interactions between the two beams, we 

can write the following equations for the rms beam emittance 

(E = 0*/B) 

L&D 
P 

d ‘e 2 -----Z--E +D 
dt T e e' 

We assume both beams are round, namely, that they have the same 

horizontal and vertical emittance. 

In the absence of diffusion-like processes and of damping 

effects, the emittances are normally considered invariants. 

The diffusion coefficient D P 
on the right hand side of (1) is 

primarily given by gas scattering and similar effects. This 

diffusion is not compensated by damping and will cause a 

linear increase of the beam emittance with time. The beam-size 

increase will stop when the beam edge has reached an aperture 

limitation; after that particles will be continuously lost. 

In observations in the Main Ring, the following was found' 

P 
D = 5 *-- 

P 
m/see. 

PGeV/c 

(1) 

(2) 

At 100 GeV, with a pressure of about 5x10 -8 torr, this would 

-10 
correspond to D 

P 
= 0.25x10 m/set. 
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In eq. (21, 7 is the synchrotron radiation-damping time 

and De the quantum-fluctuation diffusion coefficient. The 

electron beam would have an equilibrium emittance which is given 

by 

'e = ; -rD e' (2) 

This equilibrium value is reached in the e-folding time ~/2. 

Observe that ? and De depend strongly not only on the beam 

energy but also on the electron-beam storage ring lattice. 5 

The Electron-Cooling Effect 

We want now to modify eqs. (1) and (2) to include the beam- 

beam interaction, which is supposed to lead to "cooling" of 

the proton beam at the cost of some "heating" of the electron 

beam. 

Because of the large energy and since the electron beam is 

already focused by the lattice quadrupoles and rf cavities, we do 

not have to take into account space-charge effects on the tra- 

jectory of the electrons, and we do not have to guide their 

motion with a solenoid as is done at lower energies. In addition, 

one can easily verify that at larger energies 

where 8,,and 8& are respectively the longitudinal and transverse 

relative momentum spreads. This is true for both beams. Thus we 

are in the situation of a longitudinal flattened ellipsoidal 

distribution of velocities. In this case, the transverse-energy 

exchange between the two beams depends only on the transverse 

emittance of both beams and, therefore, can be decoupled from 

the longitudinal-energy exchange. In this approximation, the usual 
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formula for the damping rate of the transverse velocity is6 

1 4 Ie/e 
-==+&a2e 3' TP mpme ' e e 

(3) 

where m is the rest mass of a particle, L is the Coulomb 

logarithm, np is the ratio I/C 
P' 

where C 
P is the proton ring 

circumference, the fraction of the circumference over which cooling 

takes place, Ie is the electron beam current within the bunch, 

andaeis the electron beam radius. We are assuming here that 

beam bunches are cylindrical in shape with uniform particle 

distributions. 

Equation (3) applies to the case of uniform velocity 

distribution within the electron beam ellipsoid and for proton 

transverse velocity less than the transverse velocity spread of 

the electron beam. For the other case, Ble at the denominator 

of the right hand side of (3) should eventually be replaced 

with 8 
IP' 

To represent a more realistic distribution function 

with slopes, we shall replace 

e3 3/2 
e -+ (e2e + 02p) (4) 

in the denominator of the right hand side (3). One should then 

also introduce a factor 51 which depends on the distribution. 

Since this factor is not much different from unity, it will be 

neglected in the following. 

An expression similar to (31, combined with (41, applies 

also for the electron beam, provided T 
P 

is replaced with T,, 

mP 
with m e, but not vice versa, and n 

P' Ie and ae are replaced 

respectively with n,, Ip and a . 
P 

Since the electron storage 
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ring is smaller than the proton ring, and the lengths of the 

rings are chosen to synchronize the trasversals of bunches, the 

ratio q,/n 
P 

is given by the ratio of the number of proton bunches 

to the number of electron bunches. 

We shall also assume that along the common straight section 

the B-values of the two rings are constant and we denote them 

with Be* 
* 

and D 
P * From the definition of emittance (square of 

rms beam size/B*) then we have 

a2 = EB * and B2 = s/B*, (5) 

which we can use in the right hand side of (3). 

Disregarding any other processes than the interaction 

between the two beams, the emittance equations are 

dEP _ 2 
m 

dt - -- (E - fi Ed) 
=P p P 

where T 
P is given by (3) combined with ('I) and (5) and 're by a 

similar derivation. Equations (6) and (7) are equivalent to 

the energy exchange between two gases put in contact at different 

temperatures. Equilibrium is reached when the two temperatures 

are equal. In our case the beam temperature is given by me. 

The times 7 P and T, are equivalent to the relaxation times to 

reach equilibrium. 

Observe that in terms of temperature, the relaxation times 

for the two beams would be the same, but in terms of emittances 

as shown by (6) and (7) the dependence on the masses is 

(6) 

(7) 
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-mm 
'P pe 

and 2 T e -m e . 

Thus the electron beam "heating" time is at least 2000 times 

smaller than the proton beam "cooling" time. 

When (3), (4) and (5) are combined together, they show that 

TP 
and re depend on the beam emittances se and E 

P' 
Self-Consistent Solution at Equilibrium for Both Beams 

Let us now combine Eqs. (1) and (2) with (6) and (7). We 

obtain 

ds m 
p=D -2(s -Se) dt P Tp P mp e 

dEe 2 !I? _ = D - 7 Ee - 6 C&e - me cpj. dt e 

The solution of these equations will determine se and E as P 
function of time. Their equilibrium, asymptotic values E P"' 
E em are calculated by setting the right hand side of eqs. (8) 

and (9) equal to zero. 

Let us rewrite (8) and (9) by putting the dependence of ~~ 

and E 
P 

more explicitly 
m e 

de 
d=D --K 

Ep - m Ee 
dt P P E 

EP 
312 

Eey-F + Ts"' 
e P 

(8) 

(9) 

(10) 

dEe 
E - “12 

2 e m 
dt = De - r ~~ - ~~ e sP 

E 3/2 ’ 

EP( 
++ 7) eP 
a e BP 

(11) 
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where 

RITUAL T- I 

IcP = 
Pe 

4 4 mpmec B v*B, 

and 

K = 
~IW?L qeIp 

e me*'14 +* c a Y50p 

At equilibrium we have 

&OEe 

EP = E 
J 

--. 
e e 

where Ee is given by Eq. (2') and 

E 
0 = $T> $)Dp = $, Dp. 

P e 

(12) 

(13) 

(14) 

It is reasonable to assume that at equilibrium E~>>E~; then 

the proton beam emittance is given by (15) and ~~ would represent 

the proton-beam "cooling ' time near equilibrium. 

From (12) and (13) we derive 

(15) 

2 
= -I($) 

'I, Be* 1 
T 

0 e 
F-F+ 

pBp e 

2 Observe the factor (mP/me) , which is quite crucial for our 

analysis: one power of the ratio enters because the ratio of 

proton time T P to the electron time me is proportional to mp/me, 

and the second power comes from the last term on the right hand 

side of (111, which represents heating of the electron beam, 

which must be coped with by synchrotron-radiation damping CT.). 

(16) 
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The balance equations (10) and (11) apply in the case 

that the two beams are matched in size and velocity spread 

(at least approximately). If one wants to fulfill this condition, 
* * 

then se - E P and Be* -. B P = 6 . If one also observes that 

mPEP 
>z mese (that is, the proton beam is always "hotter" 

than the electron beam) then at equilibrium the electron beam 

emittance is given by 

,3/2 
E KP B 

e =5F;. 
0 

Application to the Main Ring and CERN-SPS 

Let us consider the example of the Main Ring at 100 GeV. 

The electron-beam energy is then 50 MeV. The proton-beam 

emittance, before gas scattering starts to dilute it, is 

EP 
= 2.2x10 -8 m 

and the diffusion coefficient 

D 
P 

= 0.25~10-1~ m/see. 

If we want to "cool" the beam so that it preserves its initial 

emittance, then the cooling time required from eq. (15) is 

(17) 

(18) 

(19) 

From (17), setting se = so and taking B* - 70 m, as it is 

in the present Main Ring medium or long straight-section, we derive 
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/ icp = 1.4x1O-25 m/see. I . (20) 

Let us take R = 10 m for the interaction length; then 

nP 
= 1.6~10-~. In addition, L = 15. Then we derive from (12) 

and (20) 

rYpzq ) (21) 

n 
after having assumed R, - 6 

n 
P - 70 m. The above is the peak 

current within the electron bunch. It is a reasonable number. 

With 1O1' protons per bunch, the peak current in the Main 

Ring is about 1 A. 

Let us assume that the number of proton bunches equals the 

number of electron bunches properly synchronized, so that 

11,/n P = 1. 

Then we derive from (16) and (19) the required radiation- 

damping time 

/I . (22) 

This number is rather small. 

The same calculation could be repeated for the CERN-SPS. 

Here it seems that D 
P is an order of magnitude smaller, because 

of better vacuum. 7 If all the other parameters remain unchanged, 

as effectively they are, then the required radiation damping time 

is also an order of magnitude larger, say around 40-50 msec. 
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One can repeat the same calculation for larger proton 

energies, say 200 GeV rather than 100 GeV. If one adopts the 

same procedure, which is to "freeze" the proton-beam emittance 

to its invariant value, then 

E 
0 - l/P (p, beam momentum) 

and presumably 

D 
P 

- 1/p*. 

From (15) then 

whereas from (17) (with se - E~) 

From 

IcP 
- l/p7'2 . 

Ie - P3'2, 

and, in conclusion, leaving I 
P 

unchanged, from (16), we derive 

that the required radiation-damping time increases with the beam 

momentum as 

T - p5’* . (23) 

Thus, at 200 GeV, for instance, T = 25 msec. At the same time 

the electron-beam energy also increases and reaching the required 

damping time is easier. Thus this scheme is better at higher 

energy. 
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The Electron Storage Ring 

In order to achieve a reasonable radiation-damping time at 

low electron energy, wiggler magnets have to be inserted in 

the electron ring. 

Let us consider the case of E = 100 GeV which would 
P 

correspond to Ee = 50 MeV. 

1 one wiggler 
unit 

t- 

P-----n 
e- P(P)>~ / 

/_ 
b 

interaction region, P. 

_I 

Figure 2. Electron Storage Ring and Wiggler 

The electron storage ring could have the shape shown in 

Fig. 2. Let us define one wiggler unit as the combination of 

magnets that gives a total bending angle of HIT and let us 

assume that there are n such units. 

The radiation damping time is 

T=T Ee 
e% (24) 

where Te is the revolution period and 
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"e = 88.5 E'(G V) e II keV/turn 
P 

e(m) 

(25) 

is the energy loss per revolution, p, being the bending radius 

in the wiggler magnets. The magnetic rigidity of the electrons 

at 50 MeV is 1.67 kG'm; therefore, if we take a bending field 

of 10 kG, which might already be too large for wigglers, then we 

have 

pe = 0.167 m. 

From (23) 

“e = 3.3 n eV/turn. 

As is shown in Fig. 2 the circumferential length of the elec- 

tron storage ring will be mostly determined by the space required 

for the wiggler magnets. We can write 

‘e I: 2x271 P, rl 

C 
Te=$‘= 

4n P, n 

c . 

Inserting these expressions in ~eq. (22), we find that the radiation- 

damping time is independent of the number of wigglers. The result 

is that the radiation damping time cannot be smaller than 

100 msec, twenty times more than what is required (eq. (20)) for 

Fermilab, but only two times larger than what is required for 

CERN. 

If one takes 

'e - 30 m 
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then one would require about 14-15 wigglers. 

If the proton-beam momentum p is increased, then obviously 

the electron-beam momentum must also increase. Then one has 

the following dependence on the momentum p 

P, - P 

ue - P3 

Te - p3> 

which gives 

T - l/p. (26) 

The radiation-damping time reduces only linearly by increasing 

the momentum of the proton beam. In addition, the number n of 

wigglers for the same storage ring circumference Ce would decrease 

as l/p. At the same time, the required damping time versus beam- 

beam momentum is given by (21). 

For the Main Ring at Fermilab, a balance between the required 

damping time (21) and the damping time that can be achieved (24) 

for an electron storage-ring circumference of 30 m is reached 

at E P = 250 GeV, which corresponds to Ee = 125 MeV. The damping 

time is about 40 ms and about six wigglers are required. 

Thus, in conclusion, the project looks feasible. 
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